Structure, Optical and Magnetic behavior of LaFeO₃ and LaFe_{0.9}Ni_{0.1}O_{3-u} by combustion method.

C. Jagadeeshwaran, A. Paul Blessington Selvadurai, V. Pazhanivelu, R. Murugaraj. Department of Physics, Anna University, Chennai-600 025, India. r.murugaraj@gmail.com.

Abstract— In the present work, we report the pure LaFeO₃ and Nickel doped $(LaFe_{0.9}Ni_{0.1}O_3)$. u:lsamples for tunable optical and magnetic properties. The samples were prepared by citrate combustion method. This method offers us a very rapid synthesis of the samples. Prepared samples were kept in hot plate to initiate the combustion process. Samples were grounded and calcined in furnace at $800^{\circ}C$ for 2 Hrs. The XRD analysis confirms the phase formation of LaFeO₃ and Ni doped LaFeO₃. The local structure of these samples was studied using Raman spectroscopy. Raman analysis shows, Ni²⁺ doping effect on the tilt and stretching phonon modes of LaFeO₃. SEM picture shows fine grains were grown with random shapes. Optical measurements were done using a U-V visible spectrometer. The Ni²⁺ ion doping significantly broadens the absorption regions. The enhancement of room temperature magnetization value is observed from the M-H curve measured using VSM. Thus, the optical and magnetic properties were significantly influenced by Ni²⁺doping and can be tuned for functional device applications.

Keywords: citrate precursor, Combustion, XRD, Raman Spectroscopy, Magnetization, Optical absorption

I. INTRODUCTION

In the present, recent years, ABO₃ perovskite-type materials are more attractive and important, since these materials have a great potential, which contribute to several fields of research interest such as solid fuel cell, solid electrolyte, fixed resistor, actuators, electromechanical devices, transducers, etc., because of special crystal structure, magnetism, electric conductivity, piezoelectric and electro-optic properties, catalytic activity and gas sensitivity, etc. [1, 2, 3]. Conventional synthesis of solid state reaction used equimolar oxide mixing and grinding periodically to get a dense single phase, this method needs a high calcination temperature (1100-1300 °C) for the reaction to occur and often results in the formation of coarse aggregates, which are difficult to break down. The grain size of the product obtained by this method is relatively large making it unsuitable for some applications, particularly for the application of photo catalytic material. Though there are several popular methods of reaction to prepare fine nano grains, mechanochemical solid reaction, sol-gel, hydrothermal synthesis, sonochemical synthesis, thermal decomposition of the heteronuclear complex, wet chemically coprecipitation, a polymerizable complex method and a microemulsion method. In which decomposition of sol gel by combustion method, particularly citrate decomposition method is a really well recognized method of synthesizing ABO₃ compound in a lesser time consumption [4] which was reported for numerous compounds AB₂O₄ and ABO₃. Also preparation of different nanostructure is reported by using this method [5]. From the literature, we observed that most of the reports of Ni doping were reported by solid state reaction method [6-8]. We observe a scarce literature of Ni doping prepared by citrate combustion method. Thus the present work, we have synthesized the LaFeO₃ and LaFe_{0.9} Ni_{0.1}O_{3- δ} to develops and enhances the optical and magnetic properties prepared by citrate combustion method.

II. EXPERIMENTAL

Analytical grade Fe (NO₃)₃·9H₂O, Ni (NO₃)₂·6H₂O, La₂O₃ and C₆H₈O₇·H₂O were used as raw materials to prepare LaFeO₃ and LaFe_{0.9} Ni_{0.1}O_{3-δ}. La (NO₃)₃·xH₂O were prepared by dissolving the La₂O₃ in Dil.HNO₃. The reaction was processed as reported [4]. X-ray diffractometer (XRD) analysis for all samples were done with Bruker D2 Phaser a Bench top model using Cu K₁ radiation. SEM image was recorded by using the instrument Quanta 200 FEG. The Optical studies were performed by measuring the absorbance in the wavelength region =300–800 nm at room temperature using UV–Vis spectrophotometer (Shimadzu UV 2450 PC Spectrophotometer). The magnetic analysis was done using vibrating sample magnetometer VSM Lakeshore - 7410.

III. XRD ANALYSIS

Figure 1 shows the XRD pattern of LaFeO₃ and LaFe_{0.9} Ni_{0.1}O_{3- δ}. The XRD pattern confirms LaFeO₃ phase and the presence of Ni dopant in the sample. The observed patterns all indexed with JCPDS card no.37-1493. The lattice parameter of the samples was found by using the GSAS software by Reitveld method with a space group of Pbnm (#62). The observed lattice parameter, increase on Ni doping and this confirms that the valence state of nickel is in Ni²⁺. Since, Ni³⁺ in LaFeO₃ usually decreases the lattice parameter on substitution[6]. The lattice parameter values obtained from the profile fit for LaFeO₃ and LaFe_{0.9} Ni_{0.1}O_{3- δ} are a=5.548 Å, b=5.556 Å and c=7.843Å and a= 5.551 Å, b=5.558 Å and c=7.846 Å correspondingly. We observe no other secondary phases and this may be either the obtained material could be of single phase or the secondary phase could not be detected from the XRD due to the limitation in the detection. We have measured the average crystallite size using Williamson-Hall plot, given below in the equation (1). Where D is the particle size in nanometers, is the wavelength of the radiation (1.54056 Å for CuK radiation), *k* is a constant equal to 0.94, $_{1/2}$ is the peak width at half-maximum intensity and is the peak position.

$$S_{1/2}Cos_{u} = \frac{K}{D} + 4V \sin u$$
 (1)

The average crystallite size calculated from it shows that the crystallite size are in nano region; size of the crystallite measured for LaFeO₃ and LaFe_{0.9} $Ni_{0.1}O_{3-\delta}$ are 55 nm and the micro strain values are 1.8×10^{-4} . Both samples exhibit only a compressive strain indicated by a negative slope which is shown in the inset of Figure 1, as fitted by the straight line equation. Compressive strain behavior is due to the nano size effect [9], because of the shrinkage of the lattice parameter.

Figure 1. XRD pattern of LaFeO₃ and LaFe_{0.9}Ni_{0.1}O_{3-u}

IV. SEM ANALYSIS

SEM images of Figure 2 show the local morphological of LaFeO₃ and LaFe_{0.9} Ni_{0.1}O_{3- δ}, images show a well nano crystalline grains, agglomerated with random shapes, closely signifying the spherical signature of the particles, particularly for LaFe_{0.9} Ni_{0.1}O_{3- δ} SEM images. SEM images of LaFeO₃ show distributed size of grains are present in it, which are comparatively larger than the grain size of LaFe_{0.9} Ni_{0.1}O_{3- δ}. We see that the measured grain sizes are relatively remains same to the crystallite size, measured from the XRD and deviation in crystallite size is expected. Since, XRD measures the average crystallite size over the region of focus of the X-ray source, similarly SEM does it.

Figure 2. SEM picture of LaFeO₃ and LaFe_{0.9}Ni_{0.1}O_{3-u}

V. RAMAN ANALYSIS

Figure 3. Raman spectra of LaFeO3 and LaFe0.9Ni0.1O3-ui

The crystals of LaFeO₃ have an orthorhombically distorted pervoskite structure with space group D_{2h}^{16} (Pbnm) with four formula units per unit cell. According to the group theory analysis that the Brillion zone center normal modes transform according to the representation [10].

$$7A_{g} \oplus 8A_{u} \oplus 5B_{1g} \oplus 10B_{1u} \oplus 7B_{2g} \oplus 8B_{2u} \oplus 5B_{3g} \oplus 10B_{3u}$$
(2)

The representation $A_u \oplus 2B_{1u}$ belongs to three acoustic modes. Modes A_g , B_{1g} , B_{2g} and B_{3g} are Raman active and modes A_u , B_{1u} , B_{2g} , B_{2u} , B_{3g} and B_{3u} are infrared active. Based on this analysis, one expects 24 Raman active modes. Raman spectra were recorded using 785 nm laser diode. The modes were measured between the regions of 1000 cm⁻¹ -100 cm⁻¹ shown in Figure 3. Generally the Modes caused by La vibrations are present below 200 cm⁻¹, labeled (A). Modes between 200 and 300 cm⁻¹ are oxygen octahedral tilt modes (T) in La. Modes between 400 cm⁻¹ and 450 cm⁻¹ are oxygen octahedral bending vibrations (B) and modes above 500cm⁻¹ are oxygen stretching vibrations (S) [11]. It is seen from the spectra that Ni²⁺ doping affects the

(IJIRSE) International Journal of Innovative Research in Science & Engineering ISSN (Online) 2347-3207

Oxygen tilt, stretching and bending modes of vibration. The spectra of LaFeO₃ and LaFe_{0.9} Ni_{0.1}O_{3- δ} are distinct by each other, the appearance and disappearance of phonon modes i.e., the peak at 222 cm⁻¹ is present in LaFeO₃, but not in LaFe_{0.9} Ni_{0.1}O_{3- δ} several other shoulder peaks are seen in LaFe_{0.9} Ni_{0.1}O_{3- δ} in the oxygen stretching modes. From the literature there are discrepancies in observing the phonon modes for LaFeO₃ from the spectra observed or reported [11- 14]. It is seen that the intensity and the peak position observed are varied on their measurements; the observed modes are mostly A_g and B_{2g} modes, these are excitable in the a-c plane of the materials, orientation of these planes make the laser spot to measure average scattering of modes, which suggest that domain orientation influence the both intensity and peak position [15].

VI. MAGNETIC AND OPTICAL ANALYSIS

Figure 4. M-H and optical curve of LaFeO3 and LaFe0.9Ni0.1O3-u

Figure 4a of The M-H curve shows the Isothermal M-H curve of LaFeO₃ and LaFe_{0.9} Ni_{0.1}O_{3- δ}, observed magnetization parameters are given in the table.1. It is seen that the LaFeO₃ show weak ferromagnetism shown in the inset of Figure 5. The origin of this magnetization is due to the canted spin present on the surface of the nanoparticles. The observed M-H curves are biased due to the presence of both ferro and anti ferromagnetic phase present in the sample. The sample show a negative exchange bias, were the loops are represent with coercivity of H_{c+} and H_{c-} in the M-H curve. We have estimated H_{EB} and H_C from the well known relations, H_{EB} = -(Hc₊ + Hc₋)/2 and H_C = (Hc₊ - Hc₋)/2, respectively are given in table 1. Enhanced magnetization is observed in the case of Ni²⁺ doping, this may be due to the uncompensated spin present of Ni²⁺ in the Fe³⁺ site [8]. From the magnetization curve it is seen that the both ferro and antiferromagnetism coexist i.e. at high field the M-H curve does not saturate.

Fable.1 M-H curve parameters	of LaFeO ₃ and	LaFe _{0.9} Ni _{0.1} O _{3-u}
-------------------------------------	---------------------------	--

Samples	Mr emu/g	H _{c+} Oe	H _c . Oe	Hc Oe	H _{ex} Oe
LaFeO ₃	0.03	256	310	283	27
LaFe _{0.9} Ni _{0.1} O _{3-u}	0.4	314	367	340.5	26.5

Figure 4b of optical curve shows the UV–Vis absorption spectra of LaFeO₃ and LaFe_{0.9} Ni_{0.1}O_{3-δ}. The samples have shown a strong absorption in the region of the ultraviolet (300–400 nm) and visible light region (400–800 nm). Direct band gap energy (Eg) was determined by fitting the absorption data to the direct transition as equation $ahv = A(hv-Eg)^{1/2}$, where a is the optical absorption coefficient, hv is the photon energy, Eg is the direct band gap, and A is a constant. The extrapolation of the linear portions of the curves toward absorption equal to zero (y = 0) gives Eg for direct transitions. The observed direct band gaps of all samples were 2.1eV and 2.12 eV. These band gaps are closed to the values reported in the literature for LaFeO₃ [16]. Eg shows a significant shift to higher. The optical absorbance of LaFeO₃ is much similar to α -Fe₂O₃ [17]. Metal to ligand transition are observed between the region of 300-500 nm. These are termed as charge transfer transition, as Ni is doped, significant broadening of the Metal to ligand transition is observed, this confirm that Ni²⁺ affects the optical transition in LaFeO₃.

VII. CONCLUSION

 $LaFeO_3$ and $LaFe_{0.9}Ni_{0.1}O_{3-\delta}$ were prepared by citrate combustion method, XRD pattern confirms the phase and the presence of Ni²⁺ in the lattice. Lattice parameter and crystallite size of the samples were determined using GSAS software and Scherrer formula. SEM image shows that the morphology of the sample is more liked spherical with grain size are randomly grown. Raman spectra of the samples show that Ni doping influences the tilting, stretching and bending vibration modes. The M-H curve illustrates the enhancement of magnetization on Ni doping. Also the optical absorption of band gap shows a broaden absorption. From the tauc plot the Ni doped band gap is blue shifted slightly.

1

REFERENCES

- Nandita Lakshminarayanan, John N. Kuhn, Sergey A. Rykov, Jean-Marc M. Milletc, UmitS. Ozkan "Doped LaFeO₃ as SOFC catalysts: Control of oxygen mobility and oxidation activity", Catal. Today 157 (2010) 446–450.
- [2] Dr. Kuiying Li, Dejun Wang, Fengqing Wu, Tengfeng Xie, Tiejin Li "Surface electronic states and photovoltage gas-sensitive characters of nanocrystalline LaFeO₃ Mater. Chem. Phys. 64 (2000) 269–272.
- [3] K.M. Parid, K.H. Reddy, S. Martha, D.P. Das, N. Biswal "Fabrication of nanocrystallineLaFeO₃: An efficient sol-gel auto-combustion assisted visible light responsive photocatalyst for water decomposition Int. J. Hydrogen Energy 35 (2010) 12161 12168.
- [4] G. Shabbir, A.H. Qureshi, K. Saeed "Nano-crystalline LaFeO₃ powders synthesized by the citrate-gel method" Mater. Lett. 60 (2006) 3706–3709.
- [5] Zhi Yang, Yi Huang, Bin Dong, Hu-Lin Li "Controlled synthesis of highly ordered LaFeO₃ nanowires using a citrate-based sol-gel route Mater. Res. Bull. 41 (2006) 274–281.
- [6] M. Idrees, M. Nadeem, M. Siddique Role of holes states on metal to insulator transition and collapse of magnetic ordering in LaFe_{1-x}Ni_xO₃ (x =0.0-0.5) Curr. Appl. Phys.13 (2013)448-452.
- [7] M Idrees, M Nadeem, M Mehmood, M Atif, Keun Hwa Chae and M M Hassan"Impedance spectroscopic investigation of delocalization effects of disorder induced by Ni doping in LaFeO₃" J. Phys. D: Appl. Phys. 44 (2011) 105401.
- [8] M. Gateshki, L. Suescun, S. Kolesnik, J. Mais, K. S'wierczek, S. Short, B. Dabrowski "Structural, magnetic and electronic properties of LaNi_{0.5}Fe_{0.5}O₃ in the temperature range 5– 1000 K J. Solid State Chem.181 (2008) 1833–1839.
- [9] A. Khorsand Zak, W.H. Abd. Majid, M.E. Abrishami, Ramin Yousefi "X-ray analysis of ZnO nanoparticles by WilliamsonHall and size-strain plot methods" Solid State Sci. 13 (2011) 251-256.
- [10] I.S. Smirnova "Normal modes of the LaMnO₃ Pnma phase:Comparison with La₂CuO₄ Cmca phase", Physica B 262 (1999) 247-261.

- [11] M. Romero, R.W.Gómez, V.Marquina, J.L.Pérez-Mazariego, R.Escamilla "Synthesis by molten salt method of the AFeO₃ system (A=La, Gd)and its structural, vibrational and internal hyperfine magnetic field characterization" PhysicaB 443(2014)90–94.
- [12] Monica Popa, Johannes Frantti, Masato Kakihana "Lanthanum ferrite LaFeO_{3+d} nanopowders obtained by the polymerizable complex method" Solid State Ionics 154–155 (2002) 437–445.
- [13] Monica Popa, Johannes Frantti, Masato Kakihana" Characterization of LaMeO₃ (Me: Mn, Co, Fe) perovskite" Solid State Ionics 154–155 (2002) 135–141.
- [14] Monica Popa, Jose M. Calderon Moreno "Lanthanum ferrite ferromagnetic nanocrystallites by a polymeric precursor route" J. Alloys Compd. 509 (2011) 4108–4116.
- [15] Jakob Andreasson, Joakim Holmlund, Christopher S. Knee, Mikael Käll, Lars Börjesson Stefan Naler, Joakim Bäckström, Michael Rübhausen Abul Kalam Azadand Sten-G. Eriksson "Franck-Condon higher order lattice excitations in the LaFe_{1-x}Cr_xO₃ (x=0, 0.1, 0.5, 0.9, 1.0) perovskites due to Fe-Cr charge transfer effects" Phys. Rev. B 75, 104302 (2007).
- [16] Sumalin Phokha, Supree Pinitsoontorn, Santi Maensiri ,Saroj Rujirawat "Structure, optical and magnetic properties of LaFeO₃ nanoparticles prepared by polymerized complex method" J Sol-Gel Sci Technol DOI 10.1007/s10971-014-3383-8.
- [17] Subarna Mitra, Soumen Das, Kalyan Mandal and Subhadra Chaudhuri "Synthesis of a -Fe2O3 nanocrystal in its different morphological attributes: growth mechanism, optical and magnetic properties" Nanotechnology 18 (2007) 275608.